Separation and Weak König's Lemma

نویسندگان

  • A. James Humphreys
  • Stephen G. Simpson
چکیده

We continue the work of [14, 3, 1, 19, 16, 4, 12, 11, 20] investigating the strength of set existence axioms needed for separable Banach space theory. We show that the separation theorem for open convex sets is equivalent to WKL0 over RCA0. We show that the separation theorem for separably closed convex sets is equivalent to ACA0 over RCA0. Our strategy for proving these geometrical Hahn–Banach theorems is to reduce to the finite-dimensional case by means of a compactness argument.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Another Unique Weak König’s Lemma Wkl!!

In [2] J. Berger and Ishihara proved, via a circle of informal implications involving countable choice, that Brouwer’s Fan Theorem for detachable bars on the binary fan is equivalent in Bishop’s sense to various principles including a version WKL! of Weak König’s Lemma with a strong effective uniqueness hypothesis. Schwichtenberg [9] proved the equivalence directly and formalized his proof in M...

متن کامل

Interpreting weak Kőnig's lemma in theories of nonstandard arithmetic

We show how to interpret weak König’s lemma in some recently defined theories of nonstandard arithmetic in all finite types. Two types of interpretations are described, with very different verifications. The celebrated conservation result of Harvey Friedman about weak König’s lemma can be proved using these interpretations. We also address some issues concerning the collecting of witnesses in h...

متن کامل

Bounded functional interpretation and feasible analysis

In this article we study applications of the bounded functional interpretation to theories of feasible arithmetic and analysis. The main results show that the novel interpretation is sound for considerable generalizations of weak König’s lemma, even in the presence of very weak induction. Moreover, when combined with Cook and Urquhart’s variant of the functional interpretation, one obtains effe...

متن کامل

Comparing DNR and WWKL

In Reverse Mathematics, the axiom system DNR, asserting the existence of diagonally non-recursive functions, is strictly weaker than WWKL0 (weak weak König’s

متن کامل

A Feasible Theory for Analysis

We construct a weak second-order theory of arithmetic which includes Weak König’s Lemma (WKL) for trees defined by bounded formulae. The provably total functions (with Σ1-graphs) of this theory are the polynomial time computable functions. It is shown that the first-order strength of this version of WKL is exactly that of the scheme of collection for bounded formulae.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Symb. Log.

دوره 64  شماره 

صفحات  -

تاریخ انتشار 1999